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Abstract

Annotation of proteins with gene ontology (GO) terms is ongoing work
and a complex task. Manual GO annotation is precise and precious, but
it is time-consuming. Therefore, instead of curated annotations most of
the proteins come with uncurated annotations, which have been generated
automatically.

Text-mining systems that use literature for automatic annotation have
been proposed but they do not satisfy the high quality expectations of
curators. In this paper we describe an approach that links uncurated an-
notations to text extracted from literature. The selection of the text is
based on the similarity of the text to the term from the uncurated anno-
tation. Besides substantiating the uncurated annotations, the extracted
texts also lead to novel annotations. In addition, the approach uses the
GO hierarchy to achieve high precision.

Our approach is integrated into GOAnnotator, a tool that assists the
curation process for GO annotation of UniProt proteins. The GO cura-
tors assessed GOAnnotator with a set of 66 distinct UniProt/SwissProt
proteins with uncurated annotations. GOAnnotator provided correct ev-
idence text at 93% precision. This high precision results from using the
GO hierarchy to only select GO terms similar to GO terms from uncu-
rated annotations in GOA. Our approach is the first one, which achieved
high precision, which is crucial for the efficient support of GO curators.

GOAnnotator is available at: http://x1db.fc.ul.pt/rebil/tools/
goa/
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1 Introduction

The core objective of GOA (GO Annotation) is to provide high-quality GO
(Gene Ontology) annotations to proteins within the UniProt Knowledgebase [2}
0, [1]. Manual GO annotation produces high-quality and granular GO term as-
signments, but tends to be slow and therefore covers less than 3% of UniProt.
For better coverage, the GOA team integrates uncurated GO annotations de-
duced from automatic mappings between UniProt and other manually curated
databases (e.g. Enzyme Commission numbers or InterPro domains). Although
these assignments have high accuracy, the GOA team still has to verify them
by extracting experimental results from peer-reviewed papers.

Reading these papers takes time, which motivates the research of text-mining
methods. Very early on Andrade et al. proposed the text-mining system AbX-
tract, which identifies keywords from MEDLINE abstracts and scores their rel-
evance for a protein family. Other systems have been developed in recent years
to identify GO terms from the text: MeKE by Chiang et al. identified potential
GO terms based on sequence alignment and Kim et al. created BiolE which
uses syntactic dependencies to select GO terms from the text [3, [8]. Further-
more, Perez et al., Miiller et al. (Textpresso) and Koike et al. suggested IT
solutions where GO terminology is applied as a dictionary [9] 13| 12]. However,
none of these systems have been integrated into the GOA curation process.
Moreover, only Perez makes use of the topology of the hierarchical structure of
GO to measure the distance between two terms based on the number of edges
that separate them. Neglecting the semantic of the hierarchical structure of
GO causes incorrect annotations by over-predicting too deep-level GO terms,
or useless annotations by predicting too general GO terms.

The selection of pieces of text that mention a GO term was assessed as part
of the BioCreAtIvE competition [7]. This competition enabled the assessment of
different text mining approaches and their ability to assist curators. The system
with the best precision predicted 41 annotations, but 27 were not correct, which
lead to a 35% precision (14 of 41). Without improvements to the precision, such
automatic extractions are unhelpful to curators. This reflects the importance of
integrating domain knowledge when designing tools to aid in the curation effort.

When manually annotating, GOA curators use pre-existing uncurated an-
notations as a guide, which can also be used to direct text-mining tools. Since
GOA curators primarily require high precision in a text-mining solution, we
expect that the information from the uncurated annotations will support this
goal without the complex issues of creating rules and patterns encompassing all
possible cases, and creating training sets that are too specific to be extended to
new domains.

Section [2| describes the GOAnnotator, and Section [3| describes the methods
incorporated. The assessment of GOAnnotator is presented in Section @ In
Section [5} we discuss the results. Finally, Section [6] expresses our main conclu-
sions.

2 GOAnnotator

GOAnnotator is a tool for assisting the GO annotation of UniProt entries by
linking the GO terms present in the uncurated annotations with evidence text
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Figure 1: List of documents related with a given protein. The list is sorted
by the most similar term extracted from each document. The curator can use
the Extract option to see the extracted terms together with the evidence text.
By default GOAnnotator uses only the abstract, but the curator can use the
AddText option to replace or insert text.

Similar GO Terms Extracted GOA Electronic Term: intacellular signaling cascade (p) | - =l
CAPRI regulates Ca2+-dependent inactivation of the Ras-MAPK pathway Ca2+ is a universal second
inactivation of MAPK (p) |- x| messenger that is critical for cell growth and is intimately associated with many Ras-dependent cellular
processes such as proliferation and differentiation [1]. —

A role for intracellular Ca2+ in the activation of Ras has been previously demonstrated, e.g., via the

nonreceptor tyrosine kinase PYK2 [3] and by Ca2+/calmodulin-dependent guanine nucleotide exchange
B [~ = ; . ;
rotein kinage C ecuvation = factors (GEFs) such as Ras-GRF [4]; however, there is no Ca2+-dependent mechanism for direct

inactivation.
Agohiasiiiia sadianad cionatia Previously, we have shown that these C2 domains do not regulate Ca2+-mediated membrane
% ~ association: instead, membrane targeting is mediated by phosphoinositide binding PH domains [11, 12
and 13]. ——
Comment: [ New Terms: Evidence:|- | - Add-—

Figure 2: For each uncurated annotation, GOAnnotator shows the similar GO
terms extracted from a sentence of the selected document. If any of the sen-
tences provides correct evidence for the uncurated annotation, or if the evidence
supports a GO term similar to that present in the uncurated annotation, the
curator can use the Add option to store the annotation together with the doc-
ument reference, the evidence codes and any comments.



automatically extracted from the documents linked to UniProt entries. Initially,
the curator provides a UniProt accession number to GOAnnotator. GOAnnota-
tor follows the bibliographic links found in the UniProt database and retrieves
the documents. Additional documents are retrieved from the GeneRIF database
or curators can add any other text [I1]. GOAnnotator prioritizes the documents
according to the extracted GO terms from the text and their similarity to the
GO terms present in the protein uncurated annotations (see Figure . Any
extracted GO term is an indication for the topic of the document, which is also
taken from the UniProt entry. The curator uses the topic as a hint to potential
GO annotation.

The extraction of GO terms is based on FiGO, a method used for the BioCre-
AtIVE competition (see Section [3) [5]. GO terms are similar if they are in the
same lineage or if they share a common parent in the GO hierarchy. A semantic
similarity measure is used to determine the degree of similarity between two GO
terms (see Section [3)).

GOAnnotator displays a table for each uncurated annotation with the GO
terms that were extracted from a document and were similar to the GO term
present in the uncurated annotation (see Figure . The sentences from which
the GO terms were extracted are also displayed. Words that have contributed
to the extraction of the GO terms are highlighted. GOAnnotator gives the
curators the opportunity to manipulate the confidence and similarity thresholds
to modify the number of predictions.

3 Methods

The two main components of GOAnnotator comprise the method to extract GO
terms from text, and the similarity measure between GO terms.

3.1 FiGO

FiGO receives a piece of text and returns the GO terms that were detected
in the given text. To each GO term, FiGO assigns a confidence value that
represents the terms’ likelihood of being mentioned in the text. The confidence
value is the ratio of two parameters. The first parameter is called local evidence
context (LEC) and is used to measure the likelihood that words in the text
are part of a given GO term. The second parameter is a correction parameter,
which increases the confidence value when the words detected in the text are
infrequent in GO.

FiGO starts by analyzing all entries of the ontology and calculating what we
call the evidence content (EC) of those words that are part of at least one entry.
This evidence content is inversely correlated to the frequency of a given word
in the ontology and it is supposed to measure its amount of evidence needed to
detect an entry in the text. For instance, consider the word “binding” that is
used in many GO terms. If this word is encountered in the text, there is a low
probability that the text mentions to the GO term “punt binding”. Instead, if
the word ‘punt’ is also encountered, then we have strong evidence that the GO
term is mentioned in the text, since ‘punt’ is not part of any other GO term.

FiGO receives i) an ontology Ont and ii) a piece of text, Tzt, as input.
FiGO returns the entries in Ont that were detected in the given text. These



entries are ranked according to their likelihood of being mentioned in the text.
For example, Ont can be the GO with each entry of Ont representing one GO
term, and T'xt can be a sentence taken from a document.

The Words
FiGO derives a map between the entries and their names:
Names(e) = {nog,...,nk},

where e € Ont and ng,...,n, are its name and synonyms in the ontology. If e
does not have synonyms, then k£ = 0 and Names(e) = {ng}. The set of words
that compose a name n is given by:

Words(n) = {wp,...,w}.
In addition, we define the set of words contained in an entry e as:
Words(e) = {w € Words(n)|n € Names(e)}
Furthermore, the words of the ontology are

Words(Ont) = {w € Words(e)|e € Ont}

Evidence Content

The evidence content of each word decreases with its frequency. The frequency
of a word w is the number of entries that contain the word:

Freq(w) = #{e € Ont|lw € Words(e)}.

A word present in only one name has high evidence content. On the other hand,
the word with the maximum frequency has no evidence content. The maximum
frequency is defined using the following equation:

MazFreq = maz{Freq(w)lw € Words(Ont)}.

Thus, WordEC(w), the evidence content of a word w, is defined using the
following equation:

Freq(w)

WordEC(w) = — lOgZ(MaxFreq

).

Since each name is composed of a set of words, we can define the evidence
content of a name n as the sum of the evidence content of its words:

NameEC(n) = z WordEC (w)
weWords(n)

The evidence content of an entry e is defined as the highest evidence content of
all its names:

EC(e) = max{NameEC(n)|n € Names(e)}.



Local Evidence Content
The input text is transformed into a set of words:
Txt = {wo,...,w}.

The local evidence content (LEC) is used to measure the likelihood that a
given name n is mentioned in the text Txt. LEC is the sum of the evidence
content of those words, which are present in the text as well as in the name:

NameLEC(n,Txt) = Z WordEC(w).
we(TztNWords(n))

The LEC is also used to measure the likelihood that a given entry e is
mentioned in the text Txt:

LEC(e,Txt) = max{NameLEC(n,Txzt)|
n € Names(e)}.

The LEC divided by the EC is a confidence level for the entry e occurring

in the Txt:
LEC(e,Txt)

EC(e)
Conf(e,Txzt) € [0, 1], since LEC is smaller than EC by definition.

If the confidence level is larger than a given threshold « € [0,1], then e is
considered to occur in T'zt:

Conf(e, Txt) =

Conf(e, Txt) > .

If @« = 1, the complete name has to appear in the text to be selected. Thus,
the o parameter is used to tune recall and precision of FiGO. An increase in
« increases precision, a decrease in « increases recall. Conf(e,T'zt) is used to
rank the returned entries, and represents the likelihood of each entry of the
ontology occurring in text.

3.2 Similarity Measure

To calculate the similarity between two GO terms, we decided to implement the
Lin’s semantic similarity measure [10]. This measure combines the structure
and content of an ontology with statistical information from corpora, and it is
based on the notion of commonality and differences between the information
content of two concepts. The information content of a concept ¢ is defined as
the negative logarithm of its probability:

IC(c) = —logy(Prob(c)).

The probability of a GO term can be calculated as the number of annotations
containing the term over the total number of annotations. Given two concepts,
c1 and co, their similarity is the information content of their most specific com-
mon ancestor a over their information content:

‘ _ 2xIC(a)
Simpin(c1,c2) = m

The most specific common ancestor of two GO terms is their common ancestor
that has the largest information content.



’ GO Aspect \ GO Terms ‘

molecular function 54
biological process 18
cellular component 6

total 78

Table 1: Distribution of the GO terms from the selected uncurated annotations
through the different aspects of GO.

’ Evidence Evaluation \ Extracted Annotations ‘

correct 83
incorrect 6
total 89

Table 2: Evaluation of the evidence text substantiating uncurated annotations
provided by the GOAnnotator.

4 Assessment

From the set of UniProt/SwissProt proteins with uncurated annotations and
without manual annotations, we selected 66 proteins for which GOAnnotator
identified evidence texts with more than 40% similarity and 50% confidence. For
80 uncurated annotations to these proteins, GOAnnotator extracted 89 similar
annotations and their evidence text from 118 MEDLINE abstracts. The 80
uncurated annotations included 78 terms from different domains of GO (see
Table . After analyzing the 89 evidence texts, GOA curators found that 83
were valid to substantiate 77 distinct uncurated annotations (see Table [2), i.e.
93% precision.

In most cases, where the evidence text was correct, the GO term present in
the extracted annotation was the same as the GO term present in the uncurated
annotation (65 cases, see Table . Although the evidence text being correct,
most of the times it did not exactly contain any of the known representations
of the extracted GO term (see Section . In the other cases the extracted
GO term was similar: in 15 cases the extracted GO term was in the same
lineage of the GO term in the uncurated annotation; in 3 cases the extracted
GO term was in a different lineage, but both terms were similar (share a parent).
In general, we can expect GOAnnotator to confirm the uncurated annotation
using the findings from the scientific literature, but it is obvious as well that
GOAnnotator can propose new GO terms.

4.1 Examples

GOAnnotator provided correct evidence for the uncurated annotation of the
protein “Human Complement factor B precursor” (P00751) with the term “com-
plement activation, alternative pathway” (G0O:0006957). The evidence is the fol-
lowing sentence from the document with the PubMed identifier 8225386: “The
human complement factor B is a centrally important component of the alterna-
tive pathway activation of the complement system.”

GOAnnotator provided a correct evidence for the uncurated annotation of



’ GO Terms Extracted Annotations

exact 65
same lineage 15

different lineage 3
total 83

Table 3: Comparison between the extracted GO terms with correct evidence
text and the GO terms from the uncurated annotations.

the protein “U4/U6 small nuclear ribonucleoprotein Prp3” (043395) with the
term “nuclear mRNA splicing, via spliceosome” (G0O:0000398). From the evi-
dence the tool extracted the child term “regulation of nuclear mRNA splicing,
via spliceosome” (GO:0048024). The evidence is the following sentence from the
document with the PubMed identifier 9328476: “Nuclear RNA splicing occurs
in an RNA-protein complex, termed the spliceosome.” However, this sentence
does not provide enough evidence on its own, the curator had to analyze other
parts of the document to draw a conclusion.

GOAnnotator provided a correct evidence for the uncurated annotation
of the protein “Agmatinase” (QIBSES5) with the term “agmatinase activity”
(G0:0008783). From the evidence the tool extracted the term “arginase activ-
ity” (G0O:0004053) that shares a common parent. The evidence was provided by
the following sentence from the document with the PubMed identifier 11804860:
“Residues required for binding of Mn(2+) at the active site in bacterial agmati-
nase and other members of the arginase superfamily are fully conserved in hu-
man agmatinase.” However, the annotation only received a NAS (Non-traceable
author statement) evidence code, as the sentence does not provide direct exper-
imental evidence of arginase activity. Papers containing direct experimental
evidence for the function/subcellular location of a protein are more valuable to
GO curators.

GOAnnotator provided a correct evidence for the uncurated annotation of
the protein “3-5” exonuclease ERI1” (Q8IV48) with the term “exonuclease ac-
tivity” (GO:0004527). The evidence is the following sentence from the docu-
ment with the PubMed identifier 14536070: “Using RNA affinity purification,
we identified a second protein, designated 3’hExo, which contains a SAP and a
3’ exonuclease domain and binds the same sequence.” However, the term “ex-
onuclease activity” is too high level, and a more precise annotation should be
“3-5" exonuclease activity” (GO:0008408).

5 Discussion

Researchers need more than facts, they need the source from which the facts
derive [I4]. GOAnnotator provides not only facts but also their evidence, since
it links existing annotations to scientific literature. GOAnnotator uses text-
mining methods to extract GO terms from scientific papers and provides this
information together with a GO term from an uncurated annotation. In gen-
eral, we can expect GOAnnotator to confirm the uncurated annotation using
the findings from the scientific literature, but it is obvious as well that GOAn-
notator can propose new GO terms. In both cases, the curator profits from



the integration of both approaches into a single interface. By comparing both
results, the curator gets convenient support to take a decision for a curation
item based on the evidence from the different data resources.

GOAnnotator provided correct evidence text at 93% precision, of which in
78% of the cases the GO term present in the uncurated annotation was con-
firmed. This performance meets the expectations of the curation process. How-
ever, sometimes, the displayed sentence from the abstract of a document did not
contain enough information for the curators to evaluate an evidence text with
sufficient confidence. Apart from the association between a protein and a GO
term, the curator needs additional information, such as: the type of experiments
applied and the species from which the protein originates. Unfortunately, quite
often this information is only available in the full text of the scientific publica-
tion. GOAnnotator can automatically retrieve the abstracts, but in the case of
the full text the curator has to copy and paste the text into the GOAnnotator
interface, which only works for a limited number of documents. BioRAT solve
this problem by retrieving full text documents from the Internet [4]. In addi-
tion, the list of documents cited in the UniProt database was not sufficient for
the curation process. In most cases, the curators found additional sources of
information in PubMed. In the future, GOAnnotator should be able to auto-
matically query PubMed using the protein’s names to provide a more complete
list of documents.

GOAnnotator ensures high accuracy, since all GO terms that did not have
similar GO terms in the uncurated annotations were rejected. This meets the
GOA team’s need for tools with high precision in preference to those with high
recall, and explains the strong restriction for the similarity of two GO terms:
only those that were from the same lineage or had a shared parent were accepted.
Thus, GOAnnotator not only predicted the exact uncurated annotation but
also more specific GO annotations, which was of strong interest to the curators.
MeKE selected a significant number of general terms from the GO hierarchy [3].
Koike et al. distinguished between gene and family names to deal with general
terms [9]. GOAnnotator takes advantage of uncurated annotations to avoid
general terms by extracting only similar terms, i.e. popular proteins tend to be
annotated to specific terms and therefore GOAnnotator will also extract specific
annotations to them.

The applied text-mining method, FiGO generated mispredictions in the in-
stances where all the words of a GO term appeared in disparate locations of a
sentence or in an unfortunate order. Improvements can result from the incorpo-
ration of better syntactical analysis into the identification of GO terms similar
to the techniques used by BiolE [§]. For example, a reduction of the window size
of FiGO or the identification of noun phrases can further increase precision. In
the future, GOAnnotator can also use other type of text-mining methods that
prove to be more efficient.

6 Conclusions

We presented GOAnnotator, a system that automatically identifies evidence
text in literature for GO annotation of Uniprot/SwissProt proteins. GOAnno-
tator provided evidence text at high precision (93%, 66 sample proteins) taking
advantage of existing uncurated annotations and the GO hierarchy. GOAnno-



tator incorporates text-mining methods to extract GO terms from text, and
a similarity measure to select GO terms similar to GO terms from uncurated
annotations.

GOAnnotator assists the curation process by allowing fast verification of

uncurated annotations from evidence texts, which can also be the source for
novel annotations. GOAnnotator is available through a Web interface, which
enables the verification of uncurated annotations of any UniProt entry with
evidence extracted from literature.
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